

XVI ESCUELA DE LA ASOCIACIÓN ARGENTINA DE CRISTALOGRAFÍA "CRECIMIENTO DE CRISTALES Y MÉTODOS DE RESOLUCIÓN ESTRUCTURAL"

Fecha: 8 al 12 de noviembre de 2025

Duración: 50 horas

Evento Satélite de la XX Reunión Anual de la Asociación Argentina de Cristalografía Protocolizado como Curso de Posgrado por la Facultad de Química, Bioquímica y Farmacia de la Universidad Nacional de San Luis

OBJETIVOS

- Tender a la actualización y profundización de conocimientos relacionados a las metodologías de crecimiento de cristales de pequeñas moléculas y de macromoléculas.
- Transmitir los fundamentos y aplicaciones de la técnica de difracción de Rayos X de monocristal y de la microscopía electrónica de barrido, con énfasis en la determinación estructural.
- Contribuir a la formación de estudiantes de posgrado e investigadores jóvenes, en los aspectos relacionados a las mencionadas técnicas instrumentales.
- Adquirir conocimiento sobre el alcance y limitaciones de los instrumentos de SC-XRD convencionales o de laboratorio. Difundir las ventajas que supone la realización de experimentos de SC-XRD en fuentes de luz sincrotrón.
- Adquirir conocimiento sobre el alcance y limitaciones de los instrumentos de TEM.
- Propiciar el conocimiento y entrenamiento en el empleo de programas de resolución, refinamiento y análisis de datos cristalográficos derivados de experimentos de SC-XRD y de TEM.

EQUIPO DOCENTE

Profesoras Responsables:

- Dra. Florencia Di Salvo (FCEN-UBA, INQUIMAE-CONICET)
- Dra. Eugenia Zelaya (Instituto Balseiro Centro Atómico Bariloche)

Profesores Colaboradores:

- Dra. María Celeste Bernini (FQBF-UNSL, INTEQUI-CONICET)
- Dr. Carlos A. López (FQBF-UNSL, INTEQUI-CONICET)
- Dr. Sebastián Klinke (Fundación Instituto Leloir CONICET)
- Dr. Arturo Gómez Barroso (FQBF-UNSL)

Auxiliares:

- Dr. Eduardo L. Gutiérrez (FQBF-UNSL, INTEQUI-CONICET)
- Lic. Natalia Carmona (FQBF-UNSL)
- Lic. Estebam Crespo (FQBF-UNSL, LABMEM)

PROGRAMA DETALLADO

Tema 1. Crecimiento de Cristales. Aspectos termodinámicos y cinéticos de la cristalización. Metodologías más comunes y consideraciones prácticas para el crecimiento de monocristales de pequeñas moléculas. Criterios de selección de monocristales para experimentos de SC-XRD. Relación entre la composición y las características instrumentales más adecuadas para su análisis.

Tema 2. Introducción al análisis de simetría en el espacio. Descripción de elementos y operaciones de simetría. Grupos puntuales y grupos espaciales. Notación de Hermann Mauguin. Nociones sobre Tablas Internacionales de Cristalografía.

Tema 3. El fenómeno de la difracción de rayos X. Difracción de ondas. Principio de Huygens. Difracción de rayos X por un electrón, por átomos, por moléculas y por cristales. La geometría de los haces difractados: Ley de Bragg. Índices de Miller. Difracción de rayos X por monocristales. Difracción en el espacio directo y en el espacio recíproco. Esfera de Ewald. Problema de las fases en Cristalografía. Métodos Directos. Métodos comúnmente aplicados para macromoléculas: Reemplazo molecular, reemplazo isomorfo y dispersión anómala. El modelo estructural.

Tema 4. Resolución de estructuras cristalinas con datos de SC-XRD. Difractómetros convencionales o de laboratorio. Softwares para resolución de estructuras cristalinas de pequeñas moléculas: Ólex2. ¿Cuándo los datos de laboratorio resultan insuficientes? Procesamiento de datos de macromoléculas, visualización y modelados manual y automático de estructuras. Grandes Facilidades: Sincrotrones al servicio de la cristalografía. Obtención de archivo de datos cristalográficos (cif) de pequeñas moléculas y PDB de macromoléculas. Validación y publicación. Estándares Recomendados por la International Union of Crystallography. Bases de Datos y Análisis estructural.

Tema 5. Lentes delgadas: trazado de rayos. Microscopio óptico y microscopio electrónico de transmisión: similitudes y diferencias. Aberraciones de las lentes. Visualización y registro de la imagen. Resolución de un TEM. Modos de operación básicos: campo claro, campo oscuro y difracción de área selecta. Tipos de patrones de difracción. Indexación de patrones de difracción.

Tema 6. Modos de operación avanzados: alta resolución, haz convergente y barrido STEM. Espectroscopia de rayos X (EDS): Fundamentos y ejemplos. Espectroscopia de pérdida de energía de electrones: Fundamentos y ejemplos. Métodos de preparación de muestras: grillas, electropulido, trípode, dimpler, adelgazador iónico, Micrótomo, FIB. Métodos para evitar polución y daño por irradiación durante la observación: fundamentos y ejemplos.

BIBLIOGRAFÍA

- "Fundamentals of Crystallography" C. Giacovazzo, H.L. Monaco, D. Viterbo, F. Scordari, G. Gilli, G. ZAnotti, M. Catti. IUCr. Oxford Science Pubs. 1995.
- "Solid State Chemistry and its applications" Anthony R. West, Second Edition, John Wiley & Sons, 2014.
- "Crystal Structure Determination". W. Clegg. Oxford Science Publications, Oxford, New York, Tokyo; Oxford University Press, 1998.
- "X-Ray Diffraction Crystallography" Y. Waseda, E. Matsubara, K. Shinoda Springer-Verlag Berlin Heidelberg 2011.
- Rupp, B. (2009). Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology (1st ed.). Garland Science. https://doi.org/10.1201/9780429258756
- Berforgs, T (2021) Protein Crystallization, Third Edition IUL Biotechnology Series, ISBN: 978-0-9720774-7-7, https://iul-press.us/product/protein-crystallization-third-edition-ebook/
- Klinke S, Rinaldi J, Goldbaum FA, Suarez S, Otero LH. An All-Inclusive and Straightway Laboratory Activity to Solve the Three-Dimensional Crystal Structure of a Protein. Biochem Mol Biol Educ. 2019 Nov;47(6):700-707. doi: 10.1002/bmb.21296.
- "Transmission Electron Microscopy" D. B. Williams C.B. Carter, Springer SciencebBusiness Media, LLC 1996, 2009.
- "Introduction to conventional transmission electron microscopy" M. De Graef, Cambridge University Press 2003.
- "Transmission Electron Microscopy", L. Reimer, H. Kohl, Springer Science+Business Media, LLC, 2008.